706 research outputs found

    Characterisation for Fine-Grain Reconfigurable Fabrics

    Get PDF
    This paper proposes a benchmarking methodology for characterising the power consumption of the fine-grain fabric in reconfigurable architectures. This methodology is part of the GroundHog 2009 power benchmarking suite. It covers active and inactive power as well as advanced low-power modes. A method based on random number generators is adopted for comparing activity modes. We illustrate our approach using five field-programmable gate arrays (FPGAs) that span a range of process technologies: Xilinx Virtex-II Pro, Spartan-3E, Spartan-3AN, Virtex-5, and Silicon Blue iCE65. We find that, despite improvements through process technology and low-power modes, current devices need further improvements to be sufficiently power efficient for mobile applications. The Silicon Blue device demonstrates that performance can be traded off to achieve lower leakage

    statistical framework for dimensionality reduction implementation in fpgas

    Get PDF
    Abstract-Dimensionality reduction or feature extraction has been widely used in applications that require a set of data to be represented by a small set of variables. A linear projection is often chosen due to its computational attractiveness. The calculation of the linear basis that best explains the data is usually addressed using the Karhunen-Loeve Transform (KLT). Moreover, for applications where real-time performance and flexibility to accommodate new data are required, the linear projection is implemented in FPGAs due to their fine-grain parallelism and reconfigurability properties. Currently, the optimization of such a design in terms of area usage is considered as a separate problem to the basis calculation. In this paper, we propose a novel approach that couples the calculation of the linear projection basis and the area optimization problems under a probabilistic Bayesian framework. The power of the proposed framework is based on the flexibility to insert information regarding the implementation requirements of the linear basis by assigning a proper prior distribution. Results using real-life examples demonstrate the effectiveness of our approach

    FPGA Architecture Optimization Using Geometric Programming

    Full text link

    Accuracy to Throughput Trade-offs for Reduced Precision Neural Networks on Reconfigurable Logic

    Full text link
    Modern CNN are typically based on floating point linear algebra based implementations. Recently, reduced precision NN have been gaining popularity as they require significantly less memory and computational resources compared to floating point. This is particularly important in power constrained compute environments. However, in many cases a reduction in precision comes at a small cost to the accuracy of the resultant network. In this work, we investigate the accuracy-throughput trade-off for various parameter precision applied to different types of NN models. We firstly propose a quantization training strategy that allows reduced precision NN inference with a lower memory footprint and competitive model accuracy. Then, we quantitatively formulate the relationship between data representation and hardware efficiency. Our experiments finally provide insightful observation. For example, one of our tests show 32-bit floating point is more hardware efficient than 1-bit parameters to achieve 99% MNIST accuracy. In general, 2-bit and 4-bit fixed point parameters show better hardware trade-off on small-scale datasets like MNIST and CIFAR-10 while 4-bit provide the best trade-off in large-scale tasks like AlexNet on ImageNet dataset within our tested problem domain.Comment: Accepted by ARC 201

    What has finite element analysis taught us about diabetic foot disease and its management?:a systematic review

    Get PDF
    Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot's complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot.A systematic literature search was carried out and 31 relevant articles were identified covering three primary themes: methodological aspects relevant to modelling the diabetic foot; investigations of the pathomechanics of the diabetic foot; and simulation-based design of interventions to reduce ulceration risk.Methodological studies illustrated appropriate use of FE analysis for simulation of foot mechanics, incorporating nonlinear tissue mechanics, contact and rigid body movements. FE studies of pathomechanics have provided estimates of internal soft tissue stresses, and suggest that such stresses may often be considerably larger than those measured at the plantar surface and are proportionally greater in the diabetic foot compared to controls. FE analysis allowed evaluation of insole performance and development of new insole designs, footwear and corrective surgery to effectively provide intervention strategies. The technique also presents the opportunity to simulate the effect of changes associated with the diabetic foot on non-mechanical factors such as blood supply to local tissues.While significant advancement in diabetic foot research has been made possible by the use of FE analysis, translational utility of this powerful tool for routine clinical care at the patient level requires adoption of cost-effective (both in terms of labour and computation) and reliable approaches with clear clinical validity for decision making
    • …
    corecore